skip to main content


Search for: All records

Creators/Authors contains: "McBriarty, Martin E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The atomic‐scale structure of the interface between a transition metal oxide and aqueous electrolyte regulates the interfacial chemical reactions fundamental to (photo)electrochemical energy conversion and electrode degradation. Measurements that probe oxide–electrolyte interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide–electrolyte interfaces far from equilibrium. Using a novel cell, the structure of the hematite (α‐Fe2O3) ()–electrolyte interface is measured under controlled electrochemical bias using synchrotron crystal truncation rod X‐ray scattering. At increasingly cathodic potentials, charge‐compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable state. Therefore, the flux of current and ions across the interface is regulated by multiple electrolyte layers whose specific structure and polarization change in response to the applied potential. The study reveals the complex environment underlying the simplified electrical double layer models used to interpret electrochemical measurements and emphasizes the importance of condition‐specific structural characterization for properly understanding catalytic processes at functional transition metal oxide–electrolyte interfaces.

     
    more » « less